WATER SUPPLY
AND POLLUTION CONTROL
Seventh Edition

Warren Viessman, Jr.
University of Florida
Mark J. Hammer
Lincoln, Nebraska

Upper Saddle River, NJ 07458
Contents

Preface xvii

Chapter 1 Introduction 1
 1.1 Drinking Water Systems 1
 1.2 Drainage and Sewerage Systems 3
 References 5

Chapter 2 Water Management 6
 2.1 From Projects to Issues 6
 2.2 Institutions 7
 2.3 Integrated Water Management 8
 2.4 Roadblocks to Be Overcome 10
 2.5 Environmental Regulation and Protection 10
 2.6 Effects of Environmental Regulations 15
 2.7 A Look to the Future 16
 2.8 Conclusions 18
 Problems 18
 References 18

Chapter 3 Water Resources Development 20
 Water Quantity 20
 3.1 Soil Moisture 21
 3.2 Surface Waters and Groundwater 21
 3.3 Runoff Distribution 22
 3.4 Groundwater Distribution 22
 Water Quality 24
 3.5 Groundwater 26
 3.6 Surface Water 26
 Hydrology and Water Management 26
 3.7 The Water Budget 27
 Surface Water Sources 28
 3.8 Basin Characteristics Affecting Runoff 28
Contents

3.9 Natural and Regulated Runoff 28
3.10 Storage 29
 Reservoirs 29
3.11 Determination of Required Reservoir Capacity 30
3.12 Methods of Computation 30
3.13 Frequency of Extreme Events 32
3.14 Probabilistic Mass Type of Analysis 33
3.15 Losses from Storage 34
 Groundwater 36
3.16 The Subsurface Distribution of Water 36
3.17 Aquifers 37
3.18 Fluctuations in Groundwater Level 37
3.19 Safe Yield of an Aquifer 39
3.20 Groundwater Flow 39
3.21 Hydraulics of Wells 44
3.22 Boundary Effects 55
3.23 Regional Groundwater Systems 56
3.24 Salt Water Intrusion 59
3.25 Groundwater Recharge 60
3.26 Concurrent Development of Groundwater and Surface Water Sources 61
3.27 Aquifer Storage and Recovery (ASR) 62
Problems 63
References 67

Chapter 4 Water Use 69
4.1 Water Sources 69
4.2 Water-Using Sectors 72
4.3 The Impact of Climate Change on Water Availability and Use 81
4.4 Water Use Trends 83
4.5 Factors Affecting Water Use 88
4.6 Population 89
4.7 Water Use Forecasting 100
Problems 111
References 113

Chapter 5 Wastewater Generation 117
5.1 Quantities of Wastewater 117
5.2 Waste Flows from Urban Areas 117
5.3 Industrial Waste Volumes 122
5.4 Agricultural Wastes 123
5.5 A Closing Note 123
Problems 123
References 124
Chapter 8 Water Quality 286

Microbiological Quality 286

8.1 Waterborne Diseases 287
8.2 Coliform Bacteria as Indicator Organisms 291

Chemical Quality of Drinking Water 294

8.3 Monitoring Drinking Water for Pathogens 295
8.4 Assessment of Chemical Quality 296
8.5 Chemical Contaminants 299

Quality Criteria for Surface Waters 308

8.6 Water Quality Standards 308
8.7 Pollution Effects on Aquatic Life 309
8.8 Conventional Water Pollutants 310
8.9 Toxic Water Pollutants 313

Selected Pollution Parameters 316

8.10 Total and Suspended Solids 316
8.11 Biochemical and Chemical Oxygen Demands 317
8.12 Coliform Bacteria 322

Problems 325

References 328

Chapter 9 Systems for Treating Wastewater and Water 330

Wastewater Treatment Systems 330

9.1 Purpose of Wastewater Treatment 331
9.2 Selection of Treatment Processes 332

Water Treatment Systems 339

9.3 Water Sources 339
9.4 Selection of Water Treatment Processes 343
9.5 Water-Processing Sludges 347

Chapter 10 Physical Treatment Processes 351

Flow-Measuring Devices 351

10.1 Measurement of Water Flow 351
10.2 Measurement of Wastewater Flow 352

Screening Devices 354

10.3 Water-Intake Screens 354
10.4 Screens in Wastewater Treatment 354
10.5 Shredding Devices 355

Hydraulic Characteristics of Reactors 355
Contents

10.6 Residence Time Distribution 356
10.7 Ideal Reactors 357
10.8 Dispersed Plug Flow 361
Mixing and Flocculation 365
10.9 Rapid Mixing 365
10.10 Flocculation 366
Sedimentation 370
10.11 Fundamentals of Sedimentation 370
10.12 Types of Clarifiers 371
10.13 Sedimentation in Water Treatment 374
10.14 Sedimentation in Wastewater Treatment 377
10.15 Grit Chambers in Wastewater Treatment 382
Filtration 384
10.16 Gravity Granular-Media Filtration 384
10.17 Description of a Typical Gravity Filter System 387
10.18 Flow Control Through Gravity Filters 392
10.19 Head Losses Through Filter Media 398
10.20 Backwashing and Media Fluidization 401
10.21 Pressure Filters 407
10.22 Membrane Filtration 407
Problems 411
References 416

Chapter 11 Chemical Treatment Processes 418

Chemical Considerations 418
11.1 Inorganic Chemicals and Compounds 419
11.2 Hydrogen Ion Concentration 423
11.3 Alkalinity and pH Relationships 424
11.4 Chemical Equilibria 425
11.5 Ways of Shifting Chemical Equilibria 426
11.6 Chemical Process Kinetics 427
11.7 Colloidal Dispersions 432
Water Coagulation 435
11.8 Coagulation Process 435
11.9 Coagulants 437
11.10 Polymers 441
Water Softening 442
11.11 Chemistry of Lime–Soda Ash Process 442
11.12 Process Variations in Lime–Soda Ash Softening 444
11.13 Cation Exchange Softening 454
Iron and Manganese Removal 455
11.14 Chemistry of Iron and Manganese 455
11.15 Preventive Treatment 456
11.16 Iron and Manganese Removal Processes 457
Chemical Disinfection and By-Product Formation 459
11.17 Chemistry of Chlorination 459
11.18 Chlorine Dioxide 463
11.19 Ozone 464
11.20 Disinfection By-Products 465
11.21 Control of Disinfection By-Products 467
11.22 Disinfection/Disinfection By-Products Rule 468
Disinfection of Potable Water 468
11.23 Concept of the C·t Product 469
11.24 Surface Water Disinfection 472
11.25 Groundwater Disinfection 476
Disinfection of Wastewater 481
11.26 Conventional Effluent Disinfection 481
11.27 Tertiary Effluent Disinfection 484
Taste and Odor 486
11.28 Control of Taste and Odor 486
Fluoridation 487
11.29 Fluoridation 488
Corrosion and Corrosion Control 489
11.30 Electrochemical Mechanism of Iron Corrosion 489
11.31 Corrosion of Lead Pipe and Solder 490
11.32 Corrosion of Sewer Pipes 491
Reduction of Dissolved Salts 492
11.33 Distillation of Seawater 492
11.34 Reverse Osmosis 494
Volatile Organic Chemical Removal 500
11.35 Design of Air-Stripping Towers 500
Synthetic Organic Chemical Removal 503
11.36 Activated Carbon Adsorption 504
11.37 Granular Activated Carbon Systems 505
Problems 506
References 517

Chapter 12 Biological Treatment Processes 520

Biological Considerations 520
12.1 Bacteria and Fungi 521
12.2 Algae 522
12.3 Protozoans and Higher Animals 523
12.4 Metabolism, Energy, and Synthesis 524
12.5 Enzyme Kinetics 527
12.6 Growth Kinetics of Pure Bacterial Cultures 529
12.7 Biological Growth in Wastewater Treatment 533
12.8 Factors Affecting Growth 535
12.9 Population Dynamics 537
Characteristics of Wastewater 541
12.10 Flow and Strength Variations 542
12.11 Composition of Wastewater 545
Trickling (Biological) Filters 548
12.12 Biological Process in Trickling Filtration 549
12.13 Trickling-Filter Operation and Filter Media Requirements 550
12.14 Trickling-Filter Secondary Systems 552
12.15 Efficiency Equations for Stone-Media Trickling Filters 555
12.16 Efficiency Equations for Plastic-Media Trickling Filters 560
12.17 Combined Trickling-Filter and Activated-Sludge Processes 569
12.18 Description of Rotating Biological Contactor Media and Process 570

Activated Sludge 572
12.19 BOD Loadings and Aeration Periods 573
12.20 Operation of Activated-Sludge Processes 577
12.21 Activated-Sludge Treatment Systems 578
12.22 Kinetics Model of the Activated-Sludge Process 591
12.23 Laboratory Determination of Kinetic Constants 596
12.24 Application of the Kinetics Model in Process Design 601
12.25 Oxygen Transfer and Oxygenation Requirements 605
12.26 Determination of Oxygen Transfer Coefficients 610

Stabilization Ponds 616
12.27 Description of a Facultative Pond 616
12.28 BOD Loadings of Facultative Ponds 618
12.29 Advantages and Disadvantages of Stabilization Ponds 619
12.30 Completely Mixed Aerated Lagoons 621

Odor Control 625
12.31 Sources of Odors in Wastewater Treatment 625
12.32 Methods of Odor Control 626

Individual On-Site Wastewater Disposal 628
12.33 Septic Tank-Absorption Field System 628

Marine Wastewater Disposal 629
12.34 Ocean Outfalls 629

Problems 631
References 642

Chapter 13 Processing of Sludges 644

Sources, Characteristics, and Quantities of Waste Sludges 644
13.1 Weight and Volume Relationships 645
13.2 Characteristics and Quantities of Wastewater Sludges 648
13.3 Characteristics and Quantities of Water-Processing Sludges 655

Arrangement of Unit Processes in Sludge Disposal 658
13.4 Selection of Processes for Wastewater Sludges 658
13.5 Selection of Processes for Water Treatment Sludges 664

Gravity Thickening 668
13.6 Gravity Sludge Thickeners in Wastewater Treatment 668
13.7 Gravity Sludge Thickeners in Water Treatment 670

Gravity Belt Thickening 671
13.8 Description of a Gravity Belt Thickener 672
13.9 Layout of a Gravity Belt Thickener System 672
13.10 Sizing of Gravity Belt Thickeners 674
Contents

13. Flotation Thickening
13.11 Description of Dissolved-Air Flotation
13.12 Design of Dissolved-Air Flotation Units

13. Biological Sludge Digestion
13.13 Anaerobic Sludge Digestion
13.14 Single-Stage Floating-Cover Digesters
13.15 High-Rate (Completely Mixed) Digesters
13.16 Volatile Solids Loadings and Digester Capacity
13.17 Aerobic Sludge Digestion
13.18 Open-Air Drying Beds
13.19 Composting

13. Pressure Filtration
13.20 Description of Belt Filter Press Dewatering
13.21 Application of Belt Filter Dewatering
13.22 Sizing of Belt Filter Presses
13.23 Description of Filter Press Dewatering
13.24 Application of Pressure Filtration

13. Centrifugation
13.25 Description of Centrifugation
13.26 Applications of Centrifugation

13. Cycling of Waste Solids in Treatment Plants
13.27 Suspended-Solids Removal Efficiency

13. Final Disposal or Use
13.28 Land Application
13.29 Codisposal in a Municipal Solid-Waste Landfill
13.30 Surface Land Disposal

14. Problems
14. References

Chapter 14 Advanced Wastewater Treatment Processes and Water Reuse

14. Limitations of Secondary Treatment
14.1 Effluent Standards
14.2 Flow Equalization

14. Selection of Advanced Wastewater Treatment Processes
14.3 Selecting and Combining Unit Processes
14.4 Granular-Media Filtration
14.5 Direct Filtration with Chemical Coagulation

14. Carbon Adsorption
14.6 Granular-Carbon Columns
14.7 Activated-Sludge Treatment with Powdered Activated Carbon

14. Phosphorus Removal
14.8 Biological Phosphorus Removal
14.9 Biological-Chemical Phosphorus Removal
14.10 Tracing Phosphorus Through Treatment Processes

14. Nitrogen Removal
14.11 Tracing Nitrogen Through Treatment Processes 761
14.12 Biological Nitrification 763
14.13 Biological Denitrification 771
14.14 Single-Sludge Biological Nitrification-Denitrification 775

Water Reuse 781

14.15 Water Quality and Reuse Applications 781
14.16 Agricultural Irrigation 788
14.17 Agricultural Irrigation Reuse, Tallahassee, Florida 795
14.18 Citrus Irrigation and Groundwater Recharge, Orange County and City of Orlando, Florida 802
14.19 Urban Reuse 806
14.20 Urban Reuse, St. Petersburg, Florida 807
14.21 Indirect Reuse to Augment Drinking Water Supply 811
14.22 Fred Hervey Water Reclamation Plant, El Paso, Texas 814
14.23 Direct Injection for Potable Supply, El Paso, Texas 817
14.24 Water Factory 21 and Groundwater Replenishment System, Orange County, California 822

Problems 830
References 841

Appendix 844

Index 855
Find out why pollution control is vital as population levels continue to grow. Water treatment facilities take the water that has been used for waste and turn it back into fresh, local water that can be consumed again. Hydrologists not only look for ways to improve these facilities, they also try to find new underground wells of water and, perhaps even more importantly, figure out how to maintain these supplies with the ever-growing threat of pollution. Pollution is industrial waste, emissions from cars, runoff of pesticides and animal wastes from farms, and extra nutrients in the soils that cause an imbalance. These can run into lakes, rivers and streams; seep into the the Water Pollution Control. the National Technical Task Committee on. Industrial Wastes, and others. Research Inventory No. 1 is a report summarizing data on 280 water supply and pollution control research projects active in the United States during 1958. The information presented was compiled from questionnaires distributed to investigators and administrators known to be conducting or directing research in water, sewage, and industrial wastes.