Developing Web-Enabled Decision Support Systems
Using Access, VB .NET, and ASP .NET

Abhijit A. Pol
Computer and Information Science and Engineering
University of Florida, Gainesville

Ravindra K. Ahuja
Industrial and Systems Engineering
University of Florida, Gainesville
and
Innovative Scheduling, Inc., Gainesville

Dynamic Ideas
Belmont, Massachusetts
Abhijit dedicates this book to his model-base: his father, Ashok; to his knowledge-base: his mother, Anagha; and to his data-base: his brother Amit.

Ravi dedicates this book to his favorite decision support network: Smita, Saumya, and Shaman.

Together, we dedicate this book to Professor Don Hearn, who inspired us to write books on decision support systems and remained a constant source of encouragement throughout their evolution.
# Contents

**PREFACE**

**PART I Principles of Good Database Design**

**CHAPTER 1 Introduction**

1.1 Introduction 000  
1.2 Defining a Decision Support System 000  
1.3 Web-enabled Decision Support Systems 000  
1.4 Decision Support Systems Applications 000  
1.5 Textbook Overview 000  
1.6 Summary 000  
1.7 Exercises 000

**CHAPTER 2 Introduction to Databases**

2.1 Introduction 000  
2.2 Data, Information, and Metadata 000  
2.3 File-Based Approach 000  
2.4 Database Approach 000  
2.5 Database Development Process 000  
2.6 Database Models 000  
2.7 Summary 000  
2.8 Exercises 000

**CHAPTER 3 Entity Relationship Modeling**

3.1 Introduction 000  
3.2 The Entity-Relationship Model 000  
3.3 Entity 000  
3.4 Attributes 000  
3.5 Relationships 000  
3.6 Degree of a Relationship 000
<table>
<thead>
<tr>
<th>CHAPTER 6</th>
<th>Access Tables: Building Data Foundation</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>6.2</td>
<td>Hands-On Tutorial: Creating Access Tables in the Datasheet View</td>
</tr>
<tr>
<td>6.3</td>
<td>Hands-On Tutorial: Creating Access Tables in the Design View</td>
</tr>
<tr>
<td>6.4</td>
<td>Field Data Types</td>
</tr>
<tr>
<td>6.5</td>
<td>Field Properties</td>
</tr>
<tr>
<td>6.6</td>
<td>The Lookup Wizard</td>
</tr>
<tr>
<td>6.7</td>
<td>Defining a Primary Key</td>
</tr>
<tr>
<td>6.8</td>
<td>Creating Access Tables by Using Import Wizard</td>
</tr>
<tr>
<td>6.9</td>
<td>Working with Table Properties</td>
</tr>
<tr>
<td>6.10</td>
<td>In-Class Assignment</td>
</tr>
<tr>
<td>6.11</td>
<td>Summary</td>
</tr>
<tr>
<td>6.12</td>
<td>Exercises</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 7</th>
<th>Relationships: Linking Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>7.2</td>
<td>Defining Relationships in the Relationships Window</td>
</tr>
<tr>
<td>7.3</td>
<td>Hands-On Tutorial: Defining Relationships in Access</td>
</tr>
<tr>
<td>7.4</td>
<td>Working with Existing Relationships</td>
</tr>
<tr>
<td>7.5</td>
<td>Field Properties</td>
</tr>
<tr>
<td>7.6</td>
<td>In-Class Assignment</td>
</tr>
<tr>
<td>7.7</td>
<td>Summary</td>
</tr>
<tr>
<td>7.8</td>
<td>Exercises</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 8</th>
<th>Queries: Building Application Foundation</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>8.2</td>
<td>Working with Select Queries</td>
</tr>
<tr>
<td>8.3</td>
<td>Queries with Multiple Tables (The Join Operation)</td>
</tr>
<tr>
<td>8.4</td>
<td>Working with Operators</td>
</tr>
<tr>
<td>8.5</td>
<td>Hands-On Tutorial: A Select Query with Join of Multiple Tables</td>
</tr>
<tr>
<td>8.6</td>
<td>Using Total Row (The GroupBy Operation)</td>
</tr>
<tr>
<td>8.7</td>
<td>Creating Calculated Fields</td>
</tr>
<tr>
<td>8.8</td>
<td>Parameter Queries</td>
</tr>
<tr>
<td>8.9</td>
<td>Crosstab Queries</td>
</tr>
<tr>
<td>8.10</td>
<td>Action Queries</td>
</tr>
<tr>
<td>8.11</td>
<td>Update Queries</td>
</tr>
<tr>
<td>8.12</td>
<td>Delete Queries</td>
</tr>
<tr>
<td>8.13</td>
<td>Append Queries</td>
</tr>
<tr>
<td>8.14</td>
<td>In-Class Assignment</td>
</tr>
<tr>
<td>8.15</td>
<td>Summary</td>
</tr>
<tr>
<td>8.16</td>
<td>Exercises</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 9</th>
<th>SQL: Creating &amp; Processing RDBs</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>9.2</td>
<td>Types of SQL Statements</td>
</tr>
</tbody>
</table>
12.7 Navigating Through Application Forms 000
12.8 Exception Handling 000
12.9 In-Class Assignment 000
12.10 Summary 000
12.11 Exercises 000

CHAPTER 13 Windows Forms and Controls

13.1 Introduction 000
13.2 The Controls 000
13.3 The Label and LinkLabel Controls 000
13.4 The TextBox Control: In Depth 000
13.5 The Button Control 000
13.6 The CheckBox Control 000
13.7 The ListBox Control: In Depth 000
13.8 The ComboBox Control 000
13.9 The CheckedListBox Control 000
13.10 The DateTimePicker Control 000
13.11 The TreeView Control 000
13.12 Arranging Controls on a Form 000
13.13 The Start-up Object 000
13.14 In-Class Assignment 000
13.15 Summary 000
13.16 Exercises 000

CHAPTER 14 Database Connectivity with ADO .NET 000

14.1 Introduction 000
14.2 Database Applications Overview 000
14.3 Hands-On Tutorial: Creating a Simple Database Application 000
14.4 Auto-Created Objects in the Component Tray 000
14.5 Hands-On Tutorial: Displaying Data in Individual Windows Controls 000
14.6 Hands-On Tutorial: Binding Data to Existing Controls 000
14.7 Hands-On Tutorial: Displaying Related Data on a Windows Form 000
14.8 DataGridView Control 000
14.9 Hands-On Tutorial: Creating a Search Form 000
14.10 The Query Builder 000
14.11 Hands-On Tutorial: Creating a Look-up Table 000
14.12 Data Binding Properties of a ComboBox Control 000
14.13 In-Class Assignment 000
14.14 Summary 000
14.15 Exercises 000

CHAPTER 15 Advance Topics in Database Connectivity 000

15.1 Introduction 000
15.2 ADO .NET Architecture 000
15.3 A Database Connection 000
15.4 Hands-On Tutorial: Displaying Data on a Form with Multiple Parameters
15.5 Hands-On Tutorial: Displaying Data on a Form from Join of Multiple Tables
15.6 Hands-On Tutorial: Displaying Data Using Existing MS Access Query
15.7 Hands-On Tutorial: Passing Data between Forms in a Windows Application
15.8 DataSets
15.9 Inserts, Updates, and Deletes in a Windows Application
15.10 Hands-On Tutorial: Updating Changes to Multiple Tables in the Database
15.11 In-Class Assignment
15.12 Summary
15.13 Exercises

CHAPTER 16 Crystal Reports
16.1 Introduction
16.2 Crystal Report Primer: A Simple Student Report
16.3 Crystal Report Sections
16.4 Customizing Reports: Exploring the Design Environment
16.5 Properties of a CrystalReportViewer Control
16.6 Hands-On Tutorial: Creating a Pie-Chart to Display Faculty Salaries
16.7 Hands-On Tutorial: Creating a Crystal Report Based on Multiple Tables
16.8 Hands-On Tutorial: Creating Parameterized Crystal Reports
16.9 In Class Assignments
16.10 Summary
16.11 Exercises

Part IV Web Application Development with ASP .NET
CHAPTER 17 Web Introduction and Essential HTML
17.1 Introduction
17.2 Internet, Web, and Related Terminologies
17.3 HyperText Markup Language (HTML)
17.4 Essential Text Formatting
17.5 HTML Hyperlinks
17.6 Page Backgrounds
17.7 Adding Graphics to Web Pages
17.8 Structuring Web Pages Using HTML Tables
17.9 Using Visual Studio’s Design View: WYSIWYG
17.10 Web Form and HTML Controls
17.11 In Class Assignments
17.12 Summary
17.13 Exercises
<table>
<thead>
<tr>
<th>CHAPTER 18</th>
<th>Introduction to ASP .NET</th>
<th>000</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.1</td>
<td>Introduction</td>
<td>000</td>
</tr>
<tr>
<td>18.2</td>
<td>ASP.NET Primer: Sum of N Numbers</td>
<td>000</td>
</tr>
<tr>
<td>18.3</td>
<td>Hands-On Tutorial: Currency Conversion Example</td>
<td>000</td>
</tr>
<tr>
<td>18.4</td>
<td>Extending the Currency Conversion Example-The AutoPostBack Property</td>
<td>000</td>
</tr>
<tr>
<td>18.5</td>
<td>Using the Page_Load Event and IsPostBack Property</td>
<td>000</td>
</tr>
<tr>
<td>18.6</td>
<td>Working with the Page Directive</td>
<td>000</td>
</tr>
<tr>
<td>18.7</td>
<td>Validation Controls</td>
<td>000</td>
</tr>
<tr>
<td>18.8</td>
<td>Passing Parameters through URL</td>
<td>000</td>
</tr>
<tr>
<td>18.9</td>
<td>User-Defined Controls</td>
<td>000</td>
</tr>
<tr>
<td>18.10</td>
<td>In Class Assignments</td>
<td>000</td>
</tr>
<tr>
<td>18.11</td>
<td>Summary</td>
<td>000</td>
</tr>
<tr>
<td>18.12</td>
<td>Exercises</td>
<td>000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 19</th>
<th>Database Connectivity in Web Applications</th>
<th>000</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.1</td>
<td>Introduction</td>
<td>000</td>
</tr>
<tr>
<td>19.2</td>
<td>Connecting to the Access Database Using the Server Explorer Window</td>
<td>000</td>
</tr>
<tr>
<td>19.3</td>
<td>Hands-On Tutorial: Displaying Data on a Web Page</td>
<td>000</td>
</tr>
<tr>
<td>19.4</td>
<td>Reconfiguring SQL Query in an AccessDataSource</td>
<td>000</td>
</tr>
<tr>
<td>19.5</td>
<td>Paging, Sorting, and Data Manipulation in a GridView Control</td>
<td>000</td>
</tr>
<tr>
<td>19.6</td>
<td>Hands-On Tutorial: Displaying Data on a Web Page from a Query with a Join of Multiple Tables</td>
<td>000</td>
</tr>
<tr>
<td>19.7</td>
<td>Hands-On Tutorial: Displaying Data-Bind Images in a GridView Control</td>
<td>000</td>
</tr>
<tr>
<td>19.8</td>
<td>Hands-On Tutorial: Adding Look-up and Filter Functionalities to a Web Page</td>
<td>000</td>
</tr>
<tr>
<td>19.9</td>
<td>Hands-On Tutorial: Displaying Related Data in a DetailsView Control</td>
<td>000</td>
</tr>
<tr>
<td>19.10</td>
<td>Hands-On Tutorial: Working with the Repeater Control</td>
<td>000</td>
</tr>
<tr>
<td>19.11</td>
<td>Web-based Crystal Reports</td>
<td>000</td>
</tr>
<tr>
<td>19.12</td>
<td>Programmatically Accessing the Database at Run-Time</td>
<td>000</td>
</tr>
<tr>
<td>19.13</td>
<td>In-Class Assignment</td>
<td>000</td>
</tr>
<tr>
<td>19.14</td>
<td>Summary</td>
<td>000</td>
</tr>
<tr>
<td>19.15</td>
<td>Exercises</td>
<td>000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part V</th>
<th>Case Studies</th>
<th>000</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASE STUDY 1</td>
<td>Online Book Store</td>
<td>000</td>
</tr>
<tr>
<td>CS1.1</td>
<td>Introduction</td>
<td>000</td>
</tr>
<tr>
<td>CS1.2</td>
<td>Application Functionalities and Assumptions</td>
<td>000</td>
</tr>
<tr>
<td>CS1.3</td>
<td>The Master Page</td>
<td>000</td>
</tr>
<tr>
<td>CS1.4</td>
<td>The Index Page</td>
<td>000</td>
</tr>
<tr>
<td>CS1.5</td>
<td>The Shopping Cart Page</td>
<td>000</td>
</tr>
<tr>
<td>CS1.6</td>
<td>The Login Page</td>
<td>000</td>
</tr>
<tr>
<td>CS1.7</td>
<td>The Checkout Page</td>
<td>000</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

xii  Contents

CS1.14  Summary  000
CS1.15  Extensions  000

CASE STUDY 2  Portfolio Management and Optimization  000
CS2.1  Introduction  000
CS2.2  Application Functionalities and Assumptions  000
CS2.3  The Master Page  000
CS2.4  The Index Page  000
CS2.5  The Personal Information Page  000
CS2.6  The Stock Comparison Page  000
CS2.7  The Portal Page  000
CS2.8  Portfolio Operations  000
CS2.9  The Optimization Page  000
CS2.10  Summary  000
CS2.11  Extensions  000

CASE STUDY 3  Television Advertisement Allocation  000
CS3.1  Introduction  000
CS3.2  Application Functionalities  000
CS3.3  The Channel Information and Program Information Page  000
CS3.4  The Customer Preferences Form  000
CS3.5  The Advertisement Allocation Page  000
CS3.6  Summary  000
CS3.7  Extensions  000

CASE STUDY 4  Voyage Prophesy  000
CS4.1  Introduction  000
CS4.2  Application Functionalities  000
CS4.3  The Startup Form, User Controls, and MapPoint Reference  000
CS4.4  The Search Form  000
CS4.5  The Show Map Form  000
CS4.6  The Drivelt Form  000
CS4.7  The Direction Form  000
CS4.8  Summary  000
CS4.9  Extensions  000

CASE STUDY 5  ADO .NET and MS Excel  000
CS5.1  Introduction  000
CS5.2  Forecasting Methods: Background and Theory  000
CS5.3  Forecasting Methods: Application Functionalities and Assumptions  000
CS5.4  Setting up the Parameter Input Form and the Excel Sheet  000
CS5.5  The Code Behind the Parameter Input Form  000
CS5.6  Dynamic Production Problem (DPP) Application  000
CS5.7  DPP: Setting up the Parameter Input Form and the Excel Sheet  000
Preface

OVERVIEW

- Motivation
- Book Contents
- Required Background
- Suggestions for Instruction
- Website Contents
- Acknowledgements

Motivation

Developing Web-Based Decision Support Systems is intended to be a textbook that describes database design and development, illustrates the programming topics (basic as well as advanced) in Visual Basic .NET and database connectivity, demonstrates web-enabling using ASP .NET, and applies these techniques to building decision support systems arising in several disciplines. This book can also be used as a supplementary reference book for courses or as a self-study manual by practitioners.

Information systems based on decision models are called Decision Support Systems (DSS). A DSS uses the data residing in databases, models it, processes or analyzes it using problem-specific methodologies, and assists the user in the decision-making process through a graphical user interface. Industrial Engineering and Operations Research (IE/OR) and business school
graduates are frequently being employed in positions that require developing DSS. We believe
defining decision support systems will gain widespread popularity in the future, and knowing how
to develop such systems will make our students highly desirable in the workplace.

IE/OR departments and business schools teach their students decision models-based
courses that impart spreadsheet modeling, optimization, and simulation skills. Most of these de-
partments require their students to take a computer-programming course, often in C++, Java,
or Visual Basic (VB). Several departments require their students to take a database course as
well. Thus, students acquire background in modeling, optimization, simulation, database, and
programming, but there are no courses that teach students how to integrate the technologies
learned in these different courses to build complete decision support systems. Students are given
many components, but they cannot assemble them into a complete package suitable for use by
a customer. Decision support systems combine these technologies, and teaching how to build
such systems is ideally suited to be an integral part of the IE/OR and business school curriculum.

Developing courses that teach our students how to build decision support systems has been
a demanding task so far, since it requires the availability of platforms that allow the integration
of various technologies (data, models, and programming). However, in the past decade, several
platforms that allow such integration have become available. One such platform is Microsoft’s
.NET technology.

The Visual Basic .NET (VB .NET) package of the .NET platform can be used in conjunction
with Microsoft Access databases to build Windows-based, single-user database applications. The
Microsoft Access database allows data storage, and VB .NET—an easy-to-learn yet powerful ob-
ject-oriented programming (OOP) language—provides a mechanism for data analysis, imple-
menting optimization and simulation models, and building graphical user interfaces. Further,
web programming has also become easier with the introduction of Active Server Pages .NET
(ASP .NET). This .NET package makes use of standard HyperText Markup Language or HTML
(the front-end) and VB .NET (the back-end) to deploy elegant and easy-to-build database-con-
nected, web-enabled applications. Another powerful .NET package is Crystal Report .NET. The
Crystal Report package provides an ideal environment for creating reports and charts that can
effectively summarize data. Thus, we have developed a complete set of course material in the Access
and .NET framework for a course on Web-Enabled Decision Support Systems. This text-
book is a byproduct of this effort. One can alternatively build spreadsheet-based decision
support systems using the Microsoft Excel spreadsheet package, which is the subject of our par-
allel effort and which led to the companion book, “Developing Spreadsheet-Based Decision Sup-

The DSS development skills are important to all IE/OR and business school graduates for
several reasons. First, having these skills will allow them to develop simple tools that might in-
crease their productivity. Second, many graduates will be involved in information systems de-
velopment during their career, and having a better understanding of the underlying technology
will allow them to play a more useful role in the development process. Third, our graduates can
develop a prototype system using the techniques learned here to establish the system proof-of-
concept before it is turned over to the professional programmers. Fourth, several graduates are
often employed in departments that are service organizations catering to the modeling and op-
timization needs of other departments such as manufacturing, sales, marketing, accounting, and
purchasing. These departments often request decision tools to be built to meet their business
needs. The users in this department are not modeling experts, and the mathematical complex-
ity of these models becomes an impediment to their use. If our graduates are well versed in the
DSS building process, they can build optimization and simulation models and package these
models within friendly interfaces so that the modeling complexity is hidden from the user. This
will make modeling and optimization approaches more popular in the workplace. Finally, with
data mining becoming increasingly important, industries are realizing a critical need for persons who understand data, models, algorithms, and IT, and our graduates can fulfill this need. Our students possess modeling and algorithmic skills to analyze the data but lack information systems development skills, and providing them these skills will make them ideally suited for this task.

Book Contents

Building a web-enabled, data-driven decision support system requires four skills: knowledge of database design, database development, database programming language, and web programming. We also need to illustrate through some practical applications how to build such decision support systems. Currently, there are no books available on the market that covers all of the five areas. Our book is intended to meet this need. There are five parts of this text book: learning database design; getting familiar with database development with Microsoft Access; learning how to program with VB .NET and build Windows-based database applications; making them web-enabled with ASP .NET; and learning how to develop DSS applications through several case studies.

Part I—Principles of Good Database Design

We start this part of the book with an introduction to decision support systems and an introduction to databases (Chapter 1 and 2). We then cover principles of good database design. The database design process primarily involves two kinds of data modeling: Object-Based Modeling and Record-Based Modeling. The entity-relationship (E-R) model—an object-based data model—describes the data in the form of an E-R diagram, entities, attributes, and relationships and is the subject of Chapter 3. The Relational data model—a record-based data model—is based on the mathematical concept of relations and uses tables (or relations) to represent data and relationships and is the subject of Chapter 4.

Part II—Database Development using MS Access

This part of the book introduces the database development process using the Microsoft Access package. In Chapter 5, we provide a tour of Access’s development environment. We introduce the development window, various menus and toolbars, and the architecture of Access and its main components. In Chapter 6, we give a detailed explanation of Access tables, the central element of relational databases. Access tables store data and provide an effective grid structure for data organization. We also discuss how to design and modify Access tables in this chapter. Chapter 7 is dedicated to relationships among Access tables. Once we have populated them with data, we can query tables to retrieve useful information. We do this through Access queries, which are the subject of Chapter 8. Chapter 9 introduces SQL, the standard language used to write database queries. We have also written two comprehensive chapters on Access Forms and Access Reports, which are available on the book website: www.dssbooks.com.

Part III—Developing Windows Applications using VB .NET

With potential uses of a database application in mind, we present VB .NET as a database programming language in this part of the book. We first introduce, in Chapter 10, the Visual Studio environment—Integrated Development Environment (IDE)—that provides all the tools we
need to develop a database application. In Chapter 11, we introduce VB .NET along with its pro-
gramming language constructs: variables, data types, control structures, operators, and arrays. 
Chapter 12 presents a discussion of the object-oriented support features of VB .NET, namely, 
Classes, Modules, Procedures, Methods, and Properties. In Chapter 13, we formally introduce 
Windows forms and controls. Forms and controls constitute the building blocks of a GUI. In 
Chapter 14, we discuss database connectivity using ADO .NET. In Chapter 15, we illustrate 
more advanced database connectivity topics. Finally, in Chapter 16, we introduce Crystal Re-
ports, a powerful tool that can summarize data in the form of reports and graphs, and discuss 
its integration with Windows forms.

**Part IV—Developing Web-based Applications using ASP .NET**

The Internet era has taken information-sharing to new heights, allowing billions of users to 
share information on the World Wide Web (WWW). This development has created the need for 
web-enabled applications that are accessible to a large number of users over a network. Today’s 
information systems involving databases are pervasive, and a growing number of them are web-
enabled. In this part of the book, we illustrate the process of developing web applications. We 
discuss Hyper Text Markup Language (HTML), a Web interface standard, in Chapter 17. We in-
troduce a Web programming language, ASP .NET, in Chapter 18. We then introduce database 
connectivity in Web applications using VB .NET and ADO .NET in Chapter 19 to build a com-
plete Web-enabled DSS.

**Part V—Developing a Complete DSS—Case Studies**

This part presents five fully developed DSS applications arising in IE/OR, business, and general 
ingineering. These case studies walk through the complete process of developing a web-enabled 
decision support system. Through these case studies, students will learn how IE/OR and business 
techniques apply to real-life decision problems and how we can effectively use those techniques 
to build DSS applications. Our case studies include Online Book Store, Portfolio Management 
and Optimization, Television Advertisement Allocation, Voyage Prophesy, and ADO .NET and MS Excel. Each case study also lists extensions that students can do as additional projects or 
practice assignments. We have developed a few more case studies that are available on the book 
website: www.dssbooks.com. The space limitation did not permit us to include these case stud-
ies in this printed form of the book. 

This book explains all topics through classical examples selected from IE/OR, business 
school, data management, and engineering curriculums. Each new concept or idea is illustrated 
through examples or hands-on tutorials and reinforced through exercises at the end of the chap-
ter. Each chapter contains an in-class assignment, several review questions, and many hands-on 
exercises. We also have created an extensive list and description of student course projects (over 
50 such projects), which will further enhance students’ learning experience. These projects are 
available at the book website.

**Required Background**

The book does not require any prior experience with databases and can be used as an introdu-
tory text for novices in database design, development, and implementation. For readers familiar 
with the design process and the Access environment, this book provides a comprehensive 
review of these topics.
Prior experience in programming is not mandatory to use this book. We instruct readers on how to create variables, define functions, use basic programming structures, and work with arrays using Visual Basic language. Readers will also learn how to create good graphical user interfaces in the Visual Studio environment. This material also includes several applications that may be considered “mini” DSS applications. Therefore, even for an experienced programmer, it is useful to review these chapters to strengthen the reader’s skills in using VB .NET and ASP .NET in the context of developing a DSS.

We hope that after learning the database background and application development material in Parts I–IV of the book, readers will be able to develop any of the case studies found in Part V. The case studies construct prototypes of data-driven, web-enabled decision support systems that are simple enough to be understood by undergraduates and complex enough to be reasonably accurate representatives of real-world problems. The case studies require that you have picked up good database design, development, and programming skills from Parts I–IV of the book.

Suggestions for Instruction

This book is primarily intended as a textbook for undergraduate and graduate students in the IE/OR and business school curriculums. This book can also be used as a reference book to supplement other textbooks in courses and as a self-study manual. DSS are great tools for consulting, and consultants can use the skills learned profitably in developing their consulting practice.

As a textbook, this book can be used in a variety of ways to teach different courses. It can be used to offer courses for undergraduate and graduate students. In an undergraduate-level course, instructors can cover topics at a slower pace. In a graduate-level course, instructors can spend less time on some topics such as programming basics or HTML, and focus more on case studies. Instructors can offer semester-long courses (covering all the material), or half-semester/quarter courses on either database design and development or Windows and Web application development.

The Web-enabled DSS course may be taught in different formats including or excluding several different chapters from our text. We propose that the general structure of the course begin by teaching database design and development to students to ensure that they are familiar with the databases; then teach VB .NET programming, database connectivity, and ASP .NET to show students how to work with Windows and Web-enabled database applications; the course should then end with a full discussion of decision support systems and instructing students how to combine their acquired database and programming skills to develop a DSS application. The text has been designed to follow this general course structure.

From our experience, it seems most productive to hold this course in a computer laboratory or require students to bring laptops to the class. We recommend that the instructor illustrate concepts, hands-on examples, or tutorials on the computer screen while students are watching them and trying to do them themselves on their computers. We suggest that the instructor end each class by conducting one of the hands-on examples or tutorials as an illustration of all the concepts taught in that class. We also recommend that there be a teaching assistant available to help students as they are doing the hands-on examples on their personal computers, while the instructor may illustrate the example simultaneously at the front of the class. We have found that students learn much more in this manner as they experiment with Access, VB .NET, and ASP .NET themselves along with the instructor, with the teaching assistant readily available to answer questions or address their difficulties.
In this suggested setting of a computer laboratory or class with laptops, we also suggest that the course be taught in two-hour sessions instead of one-hour sessions. This allows students enough time to set up their computers and instructors enough time to illustrate a full example during the class. The course material can be adjusted to teach semester long courses or half-semester/quarter courses. The material can be covered in different rigors and at different paces, and some of the material can be assigned for self-study.

We have discovered by teaching these courses over the years that students learn the most by doing course projects. Lectures teach them the technology and how to use it, but unless they apply it themselves to build complete systems, they do not assimilate the material. In addition, the process of developing a full system from conception to completion and seeing the fruits of their labor gives them tremendous satisfaction and confidence. Course projects may be done by teams of students, in which case they promote teamwork—an essential skill in any workplace. We have developed over 50 course projects from different application areas in IE/OR, business, and engineering curriculums. These projects are available at the book website. Course projects can be assigned on an individual basis or in groups depending on the course size and course format. Students can select a project from our list, or they can create their own project as long as it is sufficiently interesting and challenging. We require our students to present these projects before the entire class when completed. Many students have told us that doing these projects and building complete decision support systems was the most educative experience for them in the course. We can’t recommend them more highly!

Website Contents

We have developed a website for this textbook that contains valuable resources for both students and instructors. The URL of this website is: www.dssbooks.com

This website contains the following material:

- Database files, VB .NET and ASP .NET source code, and application files for all the Hands-On tutorials covered in all chapters
- PowerPoint presentations for all book chapters
- Source code and the complete application package including database files for all five case studies discussed in Part V of the book
- Additional case study chapters that could not be included in the book
- Database files for Hands-On exercises for required chapters
- Additional chapters on Access Forms and Reports that could not be included in the book
- A booklet containing about 50 student projects
- Sample course schedules

A Solutions Manual of the book is also available and will be provided to instructors offering courses using this book as the principle textbook. The website provides the email addresses for requesting the Solution Manual and giving your feedback to the book authors.
Acknowledgments

There are many people whom we would like to thank for making significant contributions to this book-writing project. First and foremost, we would like to thank Dr. Donald Hearn, Chair of the Industrial and Systems Engineering Department at the University of Florida, who has been the driving force in this book-writing initiative. He motivated us to teach courses that incorporate greater levels of information technology in the IE/OR curriculum at the University of Florida. He also inspired us to write this book and provided constant encouragement throughout its evolution from a concept to a reality. We are truly thankful to him for his encouragement and support.

Next, we would like to offer many thanks to Sandra Duni Eksioglu. Sandra received her doctorate in Industrial and Systems Engineering from the University of Florida and has been working with us since the inception of the project. She has developed several exercises, their solutions, and team projects for the book. Sandra has taken a lead role in organizing all the team projects into a booklet and in preparing the solutions manual for the book. Her hard work and dedication is much appreciated.

Several students of the Industrial and Systems Engineering, Computer Science, and English Departments at the University of Florida helped us in the development of the book at different stages. In particular, we would like to thank Margaret Reece and Padmavati Sridhar for the contributions they made in developing several exercises and their solutions for the book; and Krishna Jha, and Burak Eksioglu for developing several team projects. Our special thanks to the programming junta of Rakesh Desai, Siddharth Gaitonde, Kunal Gandhi, Tapasvi Moturu, and Mohammad Jaradat for the contributions they made in developing case studies and examples for the book. Ruben Galbraith assisted us in preparing the PowerPoint presentations for the book chapters, and we appreciate his help. We extend our sincere thanks to Dean Swinford, Tamara Johnston, Carolyn Houston, and Krystal Harriot for their copy editing of the text. We would also like to thank students of the DSS courses offered at the University of Florida who served as guinea pigs to test early versions of book chapters and gave valuable feedback. We are indeed indebted for their feedback. Several students who assisted us in the book-writing project were supported by the National Science Foundation Course Curriculum Development Grant 0341203.

Finally, we thank our families for their constant support and encouragement.

Abhijit A. Pol Ravindra
K. Ahuja@cn1:chapter
The common thread of articles published in Decision Support Systems is their relevance to theoretical and technical issues in the support of enhanced decision making. Examples of research topics that would be appropriate for Decision Support Systems include the following: 1. DSS Foundations e.g. principles, concepts, and theories of enhanced decision making; formal languages and research methods enabling improvements in decision making. 2. DSS Functionality e.g. methods, tools, and techniques for developing the functional aspects of enhanced decision making; solver, model, and/or data management in DSSs; rule formulation and management in DSSs; DSS development and use in computer supported cooperative work, negotiation, research and product.